
Cricket Bat Swing Detection Based on 6-Axis IMU
Dataset

1 Piyush Agarwal, 2 Shalette Natasha D’Souza
Department of Computer Science & Engineering

BMS Institute of Technology & Management
Bengaluru, Karnataka, India

Email : 11by16cs059@bmsit.in, 21by16cs074@bmsit.in

Abstract—Cricket is one of the most popular sports in the
world and many students aspire to take cricket professionally.
Technology can be a friend to provide aid to those students who
can’t take expensive coachings or professional help. To minimize
this gap a lot of organizations are working on solutions that
can analyze and recommend improvements on the user’s play.
One such approach is to use IoT devices to capture orientation,
position, velocity data, and build a recommendation system. But
the basic implementation at least needs to first detect a swing
made by the batsman so that later analysis can be done. For this,
we need to find a suitable algorithm that can perform real-time
classifications accurately and efficiently.

Index Terms—Cricket, Bat, Swing Detection, Machine learn-
ing, Spark, IMU, BNO055, Accelerometer, Gyroscope

I. INTRODUCTION
The Internet of Things (IoT) has been joining the digital

and physical worlds for years. Today, everything we think
of as “smart” technology can be attributed to IoT. If you’re
developing something smart in 2018, you’re going to connect
it to other smart devices. IoT developers are not only becoming
more in demand; they’re helping futureproof the things we use
every day in areas as basic yet essential as lighting, heating and
cooling, kitchen appliances, etc. Then there are more involved
and seemingly futuristic use cases, like robotics, autonomous
machines and medical devices. Wearable tech, like Fitbits,
have been helping regular and aspiring athletes for years now.
Wearables can tell users a lot about their physical experience,
including heart rate, distance traveled, calories burned, sleep
quality, and more. It makes sense, then, that this technology
could move into different wearable items to tell professional
athletes about their performance.

Some sporting teams have dabbled in adding AI-run chat-
bots into their technology mix to give fans a better experience,
even away from the arena. Fans on the go, for instance, could
message the chatbot and ask for statistics or updates, making
it easier to follow their favorite teams. The cricket industry
is now also adapting to the tremendous benefits of the iot
in recent days and one such place for innovation has been
coaching players from distance by the use of iot devices which
provides useable, real-time and instant 360-degree batting
performance data analytics to players and coaches through iOS
and Android-enabled mobile app. Many companies have come
up with ideas to make it as efficient and reliable as possible

but main challenges arise at the very beginning and that is the
analysis of a swing from all the moments that a player does.

II. OBJECTIVE
Our objective is to accurately classify a bat swing from all

the moments done by a cricket player with the bat based on
the data generated by 6-axis IMU device such as BNO055 in
least possible training and testing time.

III. DATASET
A. Dataset Collection

The dataset is collected from the sessions of 5 professional
students coached under prestigious cricket academies. During
the session the sensor was mounted on the bats of each player
and the data is recorded and labeled on hand as the player
played. The data is cleansed and reformatted for the use after
the recording.

B. Dataset Composition
The dataset consists of 1278 csv files out of which 806 files

contain data that represents a successful professional swing
of a bat and 472 files containing the random moments that
players may do during their play. Each file contains 100 rows
representing data for 2 second of bat moment and 6 columns
representing Linear Acceleration and Rotational Velocity in X,
Y and Z axes.

IV. TECHNOLOGIES USED
We have used Apache spark for distributed and parallel

computing and used its MLlib Library for all machine learning
related tasks. The language use is python 3.6 for convenience
and does not affect the overall result. The models are trained
and tested on google colabs, a free utility provided by google
research team for data science related projects. All graphs are
made using Matplotlib library.

V. OPERATIONAL ENVIRONMENT
In the operational environment the batsman will have the

sensor placed on the top of the handle so that it doesn’t get
damaged during gameplay. The sensor on start of the session
will start sending velocity and acceleration data to the mobile
application via either bluetooth or wifi. The Application will
collect and send the data to the server for classification on



session end. The results may comprise additional analysis after
swing detection which is shown to the user. A typical session
usually has 30 to 50 swings and a player usually goes for 3 to
5 sessions in an hour hence high accuracy and fast response
is necessary.

VI. IMPLEMENTATION

A. Decision Tree Classifier

A Decision Tree [1] is a simple representation for classify-
ing examples. It is a Supervised Machine Learning where the
data is continuously split according to a certain parameter.

Training Dataset Count 1032
Test Dataset Count 244
Accuracy 0.98770
Random (Chance) Prediction AUROC 0.5
Decision Tree Classifier AUROC 0.9878
Training Time (Sec) 7.98
Testing Time (Sec) 0.16

TABLE I
RESULT

Precision Recall f1-score Support
0 0.98 0.99 0.98 84
1 0.99 0.99 0.99 160
Accuracy 0.99 244
Macro Avg. 0.99 0.99 0.99 244
Weighted
Avg. 0.99 0.99 0.99 244

TABLE II
METRICES

True False
Positive 82 1
Negative 2 158

TABLE III
CONFUSION MATRIX

Fig. 1. ROC PLOT

B. Gradient-Boosted Tree Classifier

Gradient boosting [2] is a machine learning technique for
regression and classification problems, which produces a pre-
diction model in the form of an ensemble of weak prediction
models, typically decision trees.

Training Dataset Count 1032
Test Dataset Count 244
Accuracy 0.98770
Random (Chance) Prediction AUROC 0.5
Decision Tree Classifier AUROC 0.9938
Training Time (Sec) 15.33
Testing Time (Sec) 0.16

TABLE IV
RESULT

Precision Recall f1-score Support
0 0.98 0.99 0.98 84
1 0.99 0.99 0.99 160
Accuracy 0.99 244
Macro Avg. 0.99 0.99 0.99 244
Weighted
Avg. 0.99 0.99 0.99 244

TABLE V
METRICES



True False
Positive 82 1
Negative 2 158

TABLE VI
CONFUSION MATRIX

Fig. 2. ROC PLOT

C. Logistic Regression Model

Logistic regression [3] is a statistical model that in its basic
form uses a logistic function to model a binary dependent
variable, although many more complex extensions exist. In
regression analysis, logistic regression (or logit regression) is
estimating the parameters of a logistic model (a form of binary
regression).

Training Dataset Count 1032
Test Dataset Count 244
Accuracy 0.9836
Random (Chance) Prediction AUROC 0.5
Decision Tree Classifier AUROC 0.9982
Training Time (Sec) 4.93
Testing Time (Sec) 0.12

TABLE VII
RESULT

Precision Recall f1-score Support
0 0.99 0.96 0.98 84
1 0.98 0.99 0.99 160
Accuracy 0.98 244
Macro Avg. 0.98 0.98 0.98 244
Weighted
Avg. 0.98 0.98 0.98 244

TABLE VIII
METRICES

True False
Positive 81 3
Negative 1 159

TABLE IX
CONFUSION MATRIX

Fig. 3. ROC PLOT

D. Multilayer Perceptron Classifier

A multilayer perceptron (MLP) [4] is a class of feedforward
artificial neural network (ANN). The term MLP is used
ambiguously, sometimes loosely to refer to any feedforward
ANN.An MLP consists of at least three layers of nodes: an
input layer, a hidden layer and an output layer. Except for the
input nodes, each node is a neuron that uses a nonlinear acti-
vation function. MLP utilizes a supervised learning technique
called backpropagation for training.



Training Dataset Count 1032
Test Dataset Count 244
Accuracy 0.9016
Random (Chance) Prediction AUROC 0.5
Decision Tree Classifier AUROC 0.9676
Training Time (Sec) 16.46
Testing Time (Sec) 0.14

TABLE X
RESULT

Precision Recall f1-score Support
0 0.88 0.82 0.85 84
1 0.91 0.94 0.93 160
Accuracy 0.90 244
Macro Avg. 0.90 0.88 0.89 244
Weighted
Avg. 0.90 0.90 0.90 244

TABLE XI
METRICES

True False
Positive 69 15
Negative 9 151

TABLE XII
CONFUSION MATRIX

Fig. 4. ROC PLOT

E. Naive Bayes Classifier
In machine learning, naı̈ve Bayes classifiers [5] are a

family of simple ”probabilistic classifiers” based on applying
Bayes’ theorem with strong (naı̈ve) independence assumptions
between the features. They are among the simplest Bayesian

network models.[1] But they could be coupled with Kernel
density estimation and achieve higher accuracy levels.

Training Dataset Count 1032
Test Dataset Count 244
Accuracy 0.9754
Random (Chance) Prediction AUROC 0.5
Decision Tree Classifier AUROC 1.0
Training Time (Sec) 5.25
Testing Time (Sec) 0.18

TABLE XIII
RESULT

Precision Recall f1-score Support
0 0.93 1.00 0.97 84
1 1.00 0.96 0.98 160
Accuracy 0.98 244
Macro Avg. 0.97 0.98 0.97 244
Weighted
Avg. 0.98 0.98 0.98 244

TABLE XIV
METRICES

True False
Positive 84 0
Negative 6 154

TABLE XV
CONFUSION MATRIX

Fig. 5. ROC PLOT



F. Random Forest Classifier

It is an ensemble tree-based learning algorithm. The Ran-
dom Forest Classifier [6] is a set of decision trees from a
randomly selected subset of training set. It aggregates the votes
from different decision trees to decide the final class of the
test object.

Training Dataset Count 1032
Test Dataset Count 244
Accuracy 0.9959
Random (Chance) Prediction AUROC 0.5
Decision Tree Classifier AUROC 1.0
Training Time (Sec) 9.29
Testing Time (Sec) 0.19

TABLE XVI
RESULT

Precision Recall f1-score Support
0 1.00 0.99 0.99 84
1 0.99 1.00 1.00 160
Accuracy 1.00 244
Macro Avg. 1.00 0.99 1.00 244
Weighted
Avg. 1.00 1.00 1.00 244

TABLE XVII
METRICES

True False
Positive 83 1
Negative 0 160

TABLE XVIII
CONFUSION MATRIX

Fig. 6. ROC PLOT

G. Support Vector Machines

The objective of the support vector machine [7] algorithm
is to find a hyperplane in an N-dimensional space(N — the
number of features) that distinctly classifies the data points.

Training Dataset Count 1032
Test Dataset Count 244
Accuracy 0.9631
Random (Chance) Prediction AUROC 0.5
Decision Tree Classifier AUROC 0.9464
Training Time (Sec) 16.57
Testing Time (Sec) 0.16

TABLE XIX
RESULT

Precision Recall f1-score Support
0 1.00 0.89 0.94 84
1 0.95 1.00 0.97 160
Accuracy 0.96 244
Macro Avg. 0.97 0.95 0.96 244
Weighted
Avg. 0.97 0.96 0.96 244

TABLE XX
METRICES



True False
Positive 75 9
Negative 0 160

TABLE XXI
CONFUSION MATRIX

Fig. 7. ROC PLOT

VII. CONCLUSION

Accuracy AUROC Training
Time

Testing
Time Score*

Decision
Tree
Classifier

0.9877 0.9877 7.98 0.16 0.76

Gradient-
Boosted Tree
Classifier

0.9877 0.9938 15.33 0.16 0.40

Logistic
Regression
Model

0.9836 0.9982 4.93 0.12 1.66

Multilayer
Perceptron
Classifier

0.9016 0.9676 16.46 0.15 0.35

Naive Bayes
Classifier 0.9754 1.0 5.25 0.18 1.03

Random For-
est Classifier 0.9953 1.0 9.29 0.19 0.56

Support Vec-
tor Machines 0.9631 0.9464 16.57 0.16 0.34

TABLE XXII
RESULT COMPARISON TABLE

* The score is calculated as (Accuracy * AUROC) /
(Training time * Testing Time)

From the above result we can see that the score for
the Logistic Regression Model is the highest, hence this
means that the accuracy and time to compute the results are
at the best possible trade offs for this particular model in our
case. Since the model needs to be trained for each player
after every session of the game we need a fast and accurate
model to provide best results and this model perfectly suits
our needs. In production if we need higher accuracies and a
lighter performance overhead is acceptable then the Random
Forest Classifier will be the best choice to go for, else for
resource constrained systems Logistic Regression Model will
do the best.

ACKNOWLEDGMENT
This research would not have been possible without the

guidance, assistance and suggestions of many individuals.
We would like to express our deep sense of gratitude and
indebtedness to each and everyone who has helped us.
We express our sincere gratitude to Dr. Mohan Babu G.N,
Principal, BMSIT & M for providing all the facilities and the
support. We heartily thank Dr. Anil G N, Head of Department,
Department of Computer Science and Engineering, BMSIT
& M for his constant encouragement and inspiration in taking
up this topic for research. We gratefully thank our guide,
Dr. Anjan Krishnamurthy, Assistant Professor, Department
of Computer Science and Engineering, BMSIT & M for
encouragement and advice throughout the course of the
research. Special thanks to all the staff members of the
Computer Science Department and colleagues for their help
and kind cooperation.

REFERENCES
[1] Decision trees Accessed on: June. 07, 2020. [Online]. Available:

https://en.wikipedia.org/wiki/Decisiontree
[2] Gradient boosted decision trees Accessed on: June. 07, 2020. [Online].

Available:
https://en.wikipedia.org/wiki/Gradientboosting

[3] Logistic regression Accessed on: June. 07, 2020. [Online]. Available:
https://en.wikipedia.org/wiki/Logisticregression

[4] Multilayer perceptron Accessed on: June. 07, 2020. [Online]. Available:
https://en.wikipedia.org/wiki/Multilayerperceptron

[5] Naive Bayes classifier Accessed on: June. 07, 2020. [Online]. Available:
https://en.wikipedia.org/wiki/NaiveBayesclassifier

[6] Random Forest Classification Accessed on: June. 07, 2020. [Online].
Available:
https://towardsdatascience.com/random-forest-
classification-and-its-implementation-d5d840dbead0

[7] Support Vector Machine — Introduction to Machine Learning Algo-
rithms Accessed on: June. 07, 2020. [Online]. Available:
https://towardsdatascience.com/support-vector-
machine-introduction-to-machine-learning
-algorithms-934a444fca47


